Online Robust Low-Rank Tensor Learning

نویسندگان

  • Ping Li
  • Jiashi Feng
  • Xiaojie Jin
  • Luming Zhang
  • Xianghua Xu
  • Shuicheng Yan
چکیده

The rapid increase of multidimensional data (a.k.a. tensor) like videos brings new challenges for low-rank data modeling approaches such as dynamic data size, complex high-order relations, and multiplicity of low-rank structures. Resolving these challenges require a new tensor analysis method that can perform tensor data analysis online, which however is still absent. In this paper, we propose an Online Robust Lowrank Tensor Modeling (ORLTM) approach to address these challenges. ORLTM dynamically explores the high-order correlations across all tensor modes for low-rank structure modeling. To analyze mixture data from multiple subspaces, ORLTM introduces a new dictionary learning component. ORLTM processes data streamingly and thus requires quite low memory cost that is independent of data size. This makes ORLTM quite suitable for processing large-scale tensor data. Empirical studies have validated the effectiveness of the proposed method on both synthetic data and one practical task, i.e., video background subtraction. In addition, we provide theoretical analysis regarding computational complexity and memory cost, demonstrating the efficiency of ORLTM rigorously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Online Low Rank Tensor Learning for Multivariate Spatiotemporal Streams

Low-rank tensor learning has many applications in machine learning. A series of batch learning algorithms have achieved great successes. However, in many emerging applications, such as climate data analysis, we are confronted with largescale tensor streams, which pose significant challenges to existing solutions. In this paper, we propose an accelerated online low-rank tensor learning algorithm...

متن کامل

Hierarchical Tensor Decomposition of Latent Tree Graphical Models

We approach the problem of estimating the parameters of a latent tree graphical model from a hierarchical tensor decomposition point of view. In this new view, the marginal probability table of the observed variables is treated as a tensor, and we show that: (i) the latent variables induce low rank structures in various matricizations of the tensor; (ii) this collection of low rank matricizatio...

متن کامل

Robust Bayesian Tensor Factorization for Incomplete Multiway Data

We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CP-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The lowCP-rank tensor is ...

متن کامل

Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing

Accurate multilingual transfer parsing typically relies on careful feature engineering. In this paper, we propose a hierarchical tensor-based approach for this task. This approach induces a compact feature representation by combining atomic features. However, unlike traditional tensor models, it enables us to incorporate prior knowledge about desired feature interactions, eliminating invalid fe...

متن کامل

Tensor Regression Meets Gaussian Processes

Low-rank tensor regression, a new model class that learns high-order correlation from data, has recently received considerable attention. At the same time, Gaussian processes (GP) are well-studied machine learning models for structure learning. In this paper, we demonstrate interesting connections between the two, especially for multi-way data analysis. We show that low-rank tensor regression i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017